Low Reynolds number flows over a vertical disk in a circular tube.
نویسندگان
چکیده
منابع مشابه
Passive swimming in low-Reynolds-number flows.
The possibility of microscopic swimming by extraction of energy from an external flow is discussed, focusing on the migration of a simple trimer across a linear shear flow. The geometric properties of swimming, together with the possible generalization to the case of a vesicle, are analyzed. The mechanism of energy extraction from the flow appears to be the generalization to a discrete swimmer ...
متن کاملAsymptotic Exponents from Low-Reynolds-Number Flows
The high-order statistics of fluctuations in velocity gradients in the crossover range from the inertial to the Kolmogorov and sub-Kolmogorov scales are studied by direct numerical simulations (DNS) of homogeneous isotropic turbulence with vastly improved resolution. The derivative moments for orders 0 ≤ n ≤ 8 are represented well as powers of the Reynolds number, Re, in the range 380 ≤ Re ≤ 22...
متن کاملComplex magnetohydrodynamic low-Reynolds-number flows.
The interaction between electric currents and a magnetic field is used to produce body (Lorentz) forces in electrolyte solutions. By appropriate patterning of the electrodes, one can conveniently control the direction and magnitude of the electric currents and induce spatially and temporally complicated flow patterns. This capability is useful, not only for fundamental flow studies, but also fo...
متن کاملBifurcation of Low Reynolds Number Flows in Symmetric Channels
The ow elds in two-dimensional channels with discontinuous expansions are studied numerically to understand how the channel expansion ratio in uences the symmetric and non-symmetric solutions that are known to occur. For improved con dence and understanding, two distinct numerical techniques are used. The general ow eld characteristics in both symmetric and asymmetric regimes are ascertained by...
متن کاملSurface Roughness Effects in Low Reynolds Number Channel Flows (Preprint)
Rarefied helium and nitrogen flow expanding into vacuum through 150μm high and 1.5 cm long channels is studied experimentally and numerically with the DSMC method. Different types of channel walls are examined, both polished and rough with well characterized roughness shaped as triangles and rectangles. The pressure varies from 200 to 13,000 Pa, with the gas mean free path being both much large...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series B
سال: 1986
ISSN: 0387-5016,1884-8346
DOI: 10.1299/kikaib.52.3445